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1 Introduction

Adiabatic invariance, an approximate conservation law, is a general result for any dynamical
system that can be described by a Hamiltonian and which follows periodic motion. The
problem was first considered by Einstein in 1911 as follows (see Fig. 1): suppose we have
a pendulum that is hanging on the edge of a table with string length /y. From elementary
mechanics we know that it will oscillate periodically with frequency wy = \/g/TO, and the
total energy Ej is a constant of motion which determines the amplitude of the oscillation.
Now, suppose one slowly pulls up the string, such that after a long time 7', by long I mean
T is much greater than the oscillation period of the pendulum, the string length becomes
l1. Apparently the oscillation frequency corresponding to the new string length has changed
to wy = \/m The question is, what becomes of the oscillation amplitude, or total energy

E;? (suppose there is no dissipation.)

At first sight this problem seems ill-defined, because it does not specify how one should pull
the string: should one pull it with constant velocity, constant velocity plus a sinusoidal part,

or some increasing velocity? And indeed, the exact solution to the general problem would

*This is the topic of my oral presentation in MIT 8.614J Introduction to Plasma Physics II, taught by
Prof. B. Coppi in Spring, 1998. Comments and suggestions are welcome to liju99@mit.edu.
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Figure 1: Pull up the pendulum gently.

require a computer, and the final result will depend on how the string is pulled. The point
is that if one pulls it slowly enough, then no matter how it is pulled, in the end you’ll find

the following approximate relation to hold[1],

E FE
—0_ -+ small error. (1)
Wo w1

How small is the error? Well, what is the small parameter in this problem? Clearly it is
27 /wT, the ratio of the oscillation period to the pulling interval. So could the error be
as small as 27/wT, (27 /wT)?, etc., if it is small? It turns out that the approximation is
even better: the error made could be shown to be asymptotically smaller than any algebraic
powers of 2w /wT (transcendentally small), something like exp(—w7'/c), where c is a positive

constant!.

One can appreciate this result by relating to quantum mechanics. We know that the energy
levels of a simple harmonic oscillator are £ = (n + 1/2)hw, a discrete instead of continuous
spectrum. So F/w in Eqn. (1) can be thought of as proportional to the quantum number n,
which must be an integer and can only change by a finite amount. Since changing the system
adiabatically should only induce continuous or infinitesimal changes to the properties, one

could argue that n should not change, and thus F/w in Eqn. (1) should stays constant. This

1 This is for continuous string length function I(t). It was established by Kulsrud[1] that if /(¢)’s nth-order
derivative is discontinuous, then the error ~ (27 /wT)" 1.
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Figure 2: Adiabatic lifting: though the system has been altered, occupation of a specific
state does not change if the alterations are made slowly.

unchanged occupation of an eigenstate despite changes to the system is called adiabatic

lifting (Fig. 2), which can be proved rigorously in quantum mechanics[8, 9].

The above argument is physically illuminating. But a general proof[2, 3] can be given,
entirely within the framework of classical mechanics, that for any dynamical system with

equation of motion?

OH OH
L _ o 92
i=%, P="3; (2)
where ‘H = H(p,q|\), A are external parameters such as the string length [ or the gravi-
tational acceleration ¢ in the above pendulum problem, and which follows periodic motion

when ) is fized, has an adiabatic invariant

A= fpdq, (3)

that would remain nearly constant even if A is changed adiabatically, by which we mean the
timescale of changes in A is much greater than the oscillation period. The error made would

be transcendentally small.

2From now on I will omit the subscript i of a specific coordinate-momentum pair. The result is general
for any multidimensional system.



Take the form of a simple harmonic oscillator which the pendulum problem can be reduced
to. It has the familiar Hamiltonian
2 1

p
%(paQ|m,CU, ) = % + §mw2q2, (4)

where we usually regard the mass m and the intrinsic frequency w as constants, but here
should be considered as external parameters (denoted genericly by \) which are potentially
subject to change. For instance, we can imagine a spring-and-ball model where the spring
constant depends on, say, surrounding temperature. The question is then, what will be
the oscillation amplitude in July if we set the spring to oscillate in January, if there is no

dissipation?

The phase space trajectory of the simple harmonic oscillator is a closed ellipse (Fig. 3) when
) is fixed, with maximum displacement /2F/mw? and maximum momentum v/2mE, so the
area enclosed is A = 27 E /w, which is our adiabatic invariant by definition. Now, if one slowly
changes \ as time goes on, the trajectory would still be similar to ellipses but would fail to
close exactly each time, and in general will spiral around and slowly deform, until a much
later time, A has changed from Ay to A;. If we stop changing A then, the trajectory would
still be an ellipse, but with a different shape because firstly A has changed, and secondly the
total energy E also changed from E; to E; because changing A input energy to the system.

The claim is that the area enclosed by the initial and final ellipses are approximately equal.

One may already observe its similarity with Liouville’s theorem and hope that it might be a
simple corollary of that theorem. However various attempts by the author have failed, mainly
because it is an exact theorem for differential volume element dpdg, while the adiabatic
theorem is not exact and deals with global properties, and somehow the condition of periodic
motion for fixed A has to be used. We know that any prescribed volume in phase space will
quickly develop into “noodles” which has chaotic behavior, making the proof more difficult.

The readers are encouraged to try this route and maybe, it can be shown after all.

In section 2, I list some of the theorem’s applications to charged particle motion. A quick
proof of the theorem, largely following that of Landau and Lifshitz[2], are given in section

3. In section 4, I will make some connections with quantum mechanics.
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Figure 3: Phase space trajectories before, during and after changing A adiabatically.
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Figure 4: Charged particle gyrates as it “slides” along the magnetic field line.

2 Applications to Charged Particle Motion

There are three adiabatic invariants in a magnetic mirror confined plasma, each correspond-

ing to a periodic motion with larger temporal and spatial scale than the previous ones.

The First Adiabatic Invariant is the magnetic moment p, whose correspondent periodic

motion is the Lamor gyration (Fig. 4). It is defined (in the non-relativistic limit) as

muv?
2B’

(5)

Al x p =

which has the physical interpretation of diamagnetic current multiplied by the loop area?,

and is also proportional to the external magnetic flux through the loop. Its constancy is a

very good approximation if

B
U”aB/aZ

: (6)

2
and‘ ‘ m

qB/m

B
dB/ot

i.e., the timescale of changes in magnetic field that the particle feels is much greater than

the particle Lamor gyration period.

This result can be shown from the Lagrangian of a charged particle in a magnetic field
1 ., :
E=§mx +agx- A, (7)

where A = A(x) is the magnetic vector potential. The relevant canonical coordinate in this

3For relativistic treatments see [4], pp. 588-593.



Figure 5: Charged particle bounces back and forth in a magnetic mirror configuration.

situation is the gyration angle #, and so
L 940 )
L= gmr 6% + qro Ay + other terms, (8)

where the other terms are irrelevant because they can be regarded as external parameters

that are held fized right now. And so, the corresponding canonical momentum is

8£ 2 b
= — =mrf + qrAy, 9
Do 20 qrig (9)
and
A = §podt
:mrié-Qw+q7{A-dl
= 2rmri0 + qB - wrl, (10)
where we took the direction of B to be the positive sense of the integral. Since § = —¢B/m
in that sense, there is
2 M o m’
A = _27rvaq_B + ¢Bmv | 2B
_ 2mm omwi
B q 2B
X [ (11)

Adiabatic invariance of y is broken when Eqn. (6) is violated, for example during magnetic

pumping or cyclotron heating. For details see reference [5], pp. 44-45.

7



Figure 6: Charged particles slowly “precess” around the earth, in addition to the bouncing
motion, due to the curvature of the field lines.

The Second Adiabatic Invariant, J, also called the longitudinal invariant, corresponds to
following situation (Fig. 5): if p is invariant, then %mvi increases with B. Yet, %mv2 must
be conserved in a static magnetic field; so, if we have bottle-shaped magnetic “mirrors”,
such that the field at the bottleneck is strong enough, v can be reduced to 0 at some turning
points (a and b), and be reflected. If this is the case, and we have two opposite mirrors, then
the bouncing back and forth between the two mirrors constitutes a periodic motion on its

own right, which leads to an adiabatic invariant
b
Ay =1J E/ muds, (12)

where ds is a differential length on the path, which is the appropriate canonical coordinate.
As with all adiabatic invariants, J is also “conserved” even if the magnetic field has a slow

time dependence.

An application of the adiabatic invariance of J is to infer the pattern of macroscopic motion
of charged particles trapped by earth’s magnetic field in the magnetosphere® (Fig. 6), whose
configuration is similar to the magnetic bottle in Fig. 5, which induces the particles to
bounce back and forth between the poles. However because the magnetic field lines are

curved (with radius of curvature R), in addition to the bouncing motion there are so-called

4Tt can only look like that because V - B = 0.

5The free electrons and ions in the magnetosphere come partly from the ionosphere below, and partly
from the solar wind. The entrance of the fast electrons into earth’s atmosphere near the north and south
poles, due to the bouncing motion discussed above, is the cause of aurora, a greenish light produced by
oxygen atom.



curvature and grad-B drifts

m, , v RxB

rift = = 5 ’ 13
Varift = VR + VB q(UH 5 )TQBQ (13)

which makes the particle slowly drift across the field lines and precess around the earth. Let
us consider static fields first: if the magnetic field around the earth is axially symmetric
(which it isn’t), then clearly the line of bouncing motion (LCB) will come back to itself
after one round of precession. However, what happens if the magnetic field is not axially
symmetric, such as due to the solar wind? Will the LCB come back to itself after one round
of precession? One can show that indeed it does, using the adiabatic invariance of J: because
any magnetic field line can be uniquely specified by its azimuthal angle ¢ and distance to
earth r. At any given azimuthal angle (as the LCB finishes one round of precession), there is
only one degree of freedom, r, that could have changed. But if J is invariant we would have
one constraint, and no field lines nearby could magically come up with the same J. And so

the LCB must come back to the original field line after one round of precession.

If that is the case, then the precession itself is also a periodic motion, which leads to the
Third Adiabatic Invariant

cbocAgzyfm-rdqs. (14)

One may view the motion as an “enlarged version” of the Lamor gyration, and in fact
® is defined to be the total magnetic flux through the barrel shaped envelope of motion,
which should remain nearly constant even if the earth’s magnetic configuration changes with
time, so long as the timescale of changes is much greater than the precession period. That,
however, is often not satisfied because the precession period of a charged particle is quite

long. And so the invariance of A3 is not as robust as A; or Aj.

In the above process of constructing A (As), we see that one invokes the adiabatic invariance
of A;(Ay), which has a smaller scale, and in fact is the basic constituent of the larger motion.
This “bootstrapping” procedure of constructing a hierarchy of invariants is a beautiful result

of physics.



3 Proof of the Adiabatic Theorem

Let me define the action integral® (adiabatic invariant) to be a function

A(E,\) = ]{pdq, (15)

of F and A which has the interpretation that if we freeze A at the moment and let the system
go at constant total energy E, A is the phase space area enclosed by the orbit during one
period. To reiterate, A depends on A because A determines the Hamiltonian; A depends on
E because it is the energy we let the system go (see Fig. 7); A does not depend on (p,q)

because it does not matter where to start on a closed orbit.

Lemma I:

0A
OFE

- fdt = P(E,)) (16)

where P is the period of the orbit, a function of £ and .
Proof:

We want to investigate how much A changes if one varies £: F — E +FE, but fixing A. Let
me draw orbits H(p, q¢|\) = E and H(p,q|\) = E + 6F on Fig. 7. By definition, §A is the
area of the shaded layer,

§A = 74 di - 6h, (17)

where dl is a segment of the circular path’
dl = /(dp)* + (dg)?, (18)

and dh is the layer thickness. Since the orbits are nothing other than contour lines of the

6There seems to be some overlap of nomenclature here, because A’ = qq(%) L(g, ¢)dt is also called the
action in the path integral formulation of classical and quantum physics, ;A" = 0. They are closely related,

;’(Eff));%itf ) pdq — Hdt, (from ¢, 5y A’ = 0 we can derive Hamilton’s

equations), and so if we pick a closed trajectory, A’ = A — PE where E is the total energy and P is the
period. As we shall see, this closely resembles the statistical mechanics formula F = U — T'S.

T am a little worried about the dimension of this quantity, but one can always first nondimensionalize p
and ¢, and then proceed.

however, since £ = pg — H, thus A’ =

10
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Figure 7: Two different orbits due to different E.

function #H(p, q|A\), 6h must be in the same direction as the gradient of H in (p, q) space,

OH OH L

with

[VH| = \/¢* +P*,

JE
[VH|

and so the layer thickness must be
0h =

at each point. Thus,

5 5 oF
0A :f\/(dp) + (dq) JEEP

- 5Efdt.

and the lemma is proved.

(19)

(20)

(21)

(22)

Eqn. (16) can be applied to simple harmonic oscillators. Since the period, P = 27 /w, is
independent of E, and obviously A(E = 0,)) = 0, there must be A(E,)\) = 27F/w, in

agreement with Eqn. (1).

11
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Figure 8: Two different orbits due to different .

Lemma II:
0A

oM TH
ox| =gy =Py (23)

oN

Proof:

This corresponds to a slightly different picture (Fig. 8). The new orbit is now defined by
HP, gl +0)) = E, (24)

while the old one is defined by
H(p,q|A) = E, (25)

where I choose the same ¢ for the two, but p would differ slightly,

op=p' —p. (26)

To leading order, 0A is the area of the shaded strip (those left out on the two sides are of
higher order because the width of the orbit itself vanishes there). And so

JA = 7{ dg - 8p. (27)

12



What is dp? If we differentiate Eqn. (24) and compare with Eqn. (25), there is

oH oH

and thus OH O OH /0N
op = — o= — ON. 29
P= " 5n/ap . (29)
So
?{d ( 67{/8)\) 5\
which I choose to write as -
0A = =) - Pa—% (31)
- o\’

where OH /O\ is defined to be the circular time average of 9H/O\ as A is frozen and (p, q)

traces out a closed orbit. And so the lemma is proved.
With lemma I and II, we can prove the theorem. Notice that A has a significant dependence
on both E and ); fortunately, as a dynamical system evolves according to Eqn. (2), E

changes with \ also, and the combined effect on A largely cancels out.

Since

E= X

— 8_H+8_7-L +8_H/\

= P e o
OH -

— i 2
5 (32)

as the first two terms exactly cancel®. So there is

A(E,\) = 04

+—‘ i

8One notices its similarity with the Hellmann-Feynman theorem in quantum mechanics which, combined
with the Born-Oppenheimer approximation, allows one to derive effective forces between atoms.

13



o\ oA
(OH OH
= PA(a‘m)- (33)

Here comes the crucial insight: at any given moment, the growth rate of A, A, does not
necessarily have to be small. It could be algebraicly small, as ), but not exponentially small.

However, the time average of A is going to be very small, since

Gy = (i (- S0 34

where the () average is to be taken over many cycles; because OH /OA must be a fast oscil-
latory quantity as (p, q) spirals around, with timescale ~ P, but both A and P, which does
not depend on (p, ¢), change slowly with timescale of the “pulling interval” T. So for

on_oH
oN O\’

P would just look like a constant and can be pulled out of the average. Thus,
(A) & PA(== — ==) ~ 0, (35)

and the adiabatic theorem is proved. One can already sense that whatever small terms the

approximation (35) leaves behind should not be any algebraic powers of P/T.
= Exactly how small is AA?
Let the adiabatic changes to A happen at t = —oo and stop at ¢ = +00. Then

oo +o (0N OH
A= [ Aat= [ Pi[ZZ=-Z0)an
/_oo /_oo ( o\ OX ) (36)

Define canonical time (or angular) variable

a d
T(q\E,A):/ 'y

qmin q

14
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Figure 9: Definition of the canonical time 7.

as shown in Fig. 9, which is just the time it takes for the trajectory to go from ¢ minimum
to the current position on the closed orbit that it belongs to, if A is fixed. Clearly 0H /0 is
a periodic function of 7 with period P, and so could be expanded into a Fourier series

OH O0H & 2mn
= I—T

= a—i—nz_l{an(E, A) exp( )-I—c.c.}, (38)

where we have explicitly taken out the n = 0 term which is nothing other than H/0\. And
following Eqn. (36), there is

2mnTt

P

AA = i:jl { [ :’o P(E,\)Aa,(E, /\)s—i exp(i )dr + c.c.} : (39)

If A\ =0, then ¢ and 7 are in phase and dt/dr = 1. If X varies, but slowly, then one still has
dt/dr =~ 1; but more importantly, dt/dT — 1 has no high frequency components because the
phase between ¢ and 7 are, by all means, nearly synchronous. Thus in the integrand of Eqn.
(39), exp(i2mn7/P) is the fast oscillatory component, but P(E, ), A, a,(E,\) and dt/dr
are all slow variables of 7, providing only the envelope as illustrated in Fig. 10. And the

total integral will be small indeed, due to the myriad of cancellations.

Asymptotic evaluation of integrals have three main contributors: endpoints, singularities
and saddle points, the latter two involving complex plane structures|7]. Here because the in-

tegration is carried out from —oo to +o00, there are no endpoint contributions. Saddle points

15
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Figure 10: Illustration of A(7), integrand of Eqn. (39).

cannot exist because PAa,dt/dr has no matches for the fast oscillation of exp(i2wnt/P).
The only possible contributors left are therefore singularities of P}\andt/ d7t on the complex
T-plane, and since it is a well-behaved function on the real axis with characteristic timescale
T, one could argue that the singularities must be at least O(T) away from the real axis®.
And so if we lift the integration contour from (—oco — +o0) to (—o0 + ia — 400 + ia)
on the upper half plane, the first singularity it encounters (for n = 1) will give the leading

contribution. In this case, therefore,
T
AA ~ exp(—const - F)’ (40)

a transcendentally small quantity for small P/T.

All the ideas above can be illustrated by a fictitious example. Try

/+°° T2 27T

o T2+ T2 eXp(l?)dTa (41)

and see how small it is.

If A(t) has a discontinuity at the nth-order derivative, then it is equivalent to introducing
endpoints to the integration (39), which in general dominates over the singularity contribu-

tions. Here one can tilt the integration path 90° upward at the endpoint, and show that the

9An example is 1/(z% + T?). A counter-example is |z|, which can be thought of as lim._,o vz2 + €2, with
branch points +ie pinching down.

16



leading order contribution must scale as

AA ~ (;)HH, (42)

where the 77"~ factor comes from dimensional arguments. Try

2rT

/0 T exp(~ 5 )dr (43)

to get the basic idea.

4 Remarks

1. The adiabatic invariant A(F, \) is in fact the crucial connection between classical and

quantum physics. The following formula!®
1
A= fpdq =2m(n+ 5)7‘1 (44)

is the famous Bohr-Sommerfeld quantization condition, which could be derived from
the bound-state condition in the WKB approximation[8, 9] (so-called “small h” ex-
pansion), within quantum mechanics. The fundamental “density of state” it leads
to,
N = e (45)
h
is used ubiquitously in statistical mechanics and plays a crucial role in “getting the

numbers right”, from blackbody radiation to the mass of a neutron star.

2. The Born-Oppenheimer approximation[11], crucial in the discussion of atomic interac-
tions in condensed matter physics, interestingly is also called the “adiabatic approxi-
mation”. The gist is that since the “fast” electronic degrees of freedom are so much
faster than the “slow” ionic degrees of freedom, their relaxation looks almost instan-
taneous to the ions; or from the electronic points of view, the ions move so slowly

that their coordinates are really the adiabatic variable A\, which could not alter the

10The factor 1/2 should be omitted in the hydrogen atom model.

17



quantum numbers of occupied electronic states. The Born-Oppenheimer approxima-
tion fails whenever the available energy is so high that the ionic motions couple to

electronic excitations.

. Adiabatic lifting is a useful tool in regularizing quantum scattering problems and field
theory[12], since it provides a well defined initial and final state for the system. The
multitude of tricks involving small € in the complex (k,w) plane after Fourier trans-
form (whose rigorous definition requires square-integrability), can all be interpreted by

adiabatic lifting with time-dependence e“*,

. There are some symbolic correspondences between Eqn. (16) and the statistical me-

chanical formula[10]
oS 1

gl S 46
OE v = T (46)
as it is well-known that there are a lot of such correspondences between time and

inverse temperature. One cannot help but notice that

A'=A- PE, (47)
introduced in the footnote of section 3, looks very similar to

F=U-TS (48)

in statistical mechanics where F'is the Helmholtz free energy. The reason might be that
both formulations (Lagrangian to Hamiltonian dynamics, micro-canonical to canonical

ensemble) involve Legendre transforms.

. Lastly, in some quantum oscillator problems, such as a spin under external magnetic
field, not only the oscillation amplitude, but also the phase of the oscillation, has a
beautiful result if the relevant external parameters (such as the magnetic field) are
varied adiabatically. The extra phase depends only on geometry, and is called the
“Berry’s phase”[9]. T am not sure whether similar examples exist in classical mechanics,
but it might be not as important because phase only matters greatly to wave functions,

which could interfere.

18
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