
22.53 Problem Set I solutionTA: Jingli LiuSeptember 26, 2000
1 Problem 1 Solution1.1 Simulate solid at low T without T s
aling1.1.1 Energy equipartitionStatement The average kineti
 energy of mole
ules in the system stands for the tempera-ture. In our system( Lennard-Jones potential intera
tion), there are three degrees of freedomfor ea
h mole
ular: x,y and z dire
tion. Thus, when having rea
hed equilibrum, we shouldexpe
t that the average kineti
 energy should be divided equally by these three degrees.That means ea
h 
omponet of the average kineti
 energy makes the same 
ontribution tothe temperature. In mathemati
s, we 
an express as:< v2x > + < v2y > + < v2z >= kTm (1)where k is Boltzman 
onstant (1.38x10�23J/K), T is the dimensional temperature and m isthe mass of atom ( for argon, the atomi
 weight is 39.948g/mol, so the mass of the atom is6.634x10�26kg).We use the Haile 
ode to 
al
ulate these three averages with some small modi�
ations. Ourparameters are as follows:� NP (Number of Parti
les): 108 1
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Figure 1: Energy Equipartition� NEQ (Number of Equilibration Timesteps): 1000� MAXKB (Number of Timesteps): 3000� TR (Redu
ed Temperature): 0.1� DR (Redu
ed density): 1.1Results Here the unit of horizon axis is Æt=ÆT imeUnits2



From our 
al
ulateions obtain (redu
ed)< v2x >= 0:0983 (2)< v2y >= 0:0952 (3)< v2z >= 0:0900 (4)Temperature = 0.10.So,< v2x >�< v2y >�< v2z >� T .Dis
ussion A
tually this is a spe
ial 
ase of a more general equipartion theorem of statis-ti
al me
hani
s. If there are more dgrees of freedom, su
h as rotation, vibration, et
., ea
hdegree wil have the average energy whi
h equals to 12KT , and total average kineti
 energywill be a produ
t of degrees of freedom and 12KT . Thus, the total kineti
 energy in thesystem 
an be evaluated. And it is a little di�erent from the potential energy, whi
h 
anonly be 
on
erned with the 
on�guration of the mole
ules.1.1.2 ReversibilityStatements Let's investigate su
h a solid whi
h internal mole
ules aare assumed to obeyNewton's law of motion. In this 
ase, we will think of their reversibility. Having 
hosen 32parti
les, we will simulate a solid; after running 10 time steps, we suddenly 
hange the signsof the velo
ities. then, we 
an expe
t all the parti
les go right ba
k. The same time later,whole system will be ba
k to its original position ex
ept all the velo
ities are inverted.� NP: 32� NEQ: 0� MAXKB:22� TR: 0.6� DR: 1.1 3



Result We re
ord all these 32 parti
les original positions and velo
ities. We suddenly
hange the signs of velo
ities and also X3,X5,Y3,Y5,Z3,Z5 at the 11th step. We then willsee at the 20th step, the velo
ities of the parti
les are reversed.The following two tables are the positions and velo
ities of parti
les of the 1st step and the20th separately.
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X Y Z Vx Vy Vz3.073499 3.074764 0.006527 -0.403826 -0.151734 1.3015840.001265 0.770241 0.775623 0.252414 0.273412 1.3450260.770666 0.000646 0.775632 0.356531 0.127730 1.3468920.766012 0.762923 3.075463 -0.573789 -1.188352 -0.0116271.533708 0.002945 0.004475 -0.807977 0.585949 0.8933881.536895 0.763510 0.765245 -0.171153 -1.070617 -0.7254302.311994 3.072210 0.766303 1.065738 -0.660597 -0.5151032.311720 0.766110 3.072026 1.013313 -0.553555 -0.6980980.001275 1.533760 3.070478 0.254681 -0.798802 -1.0056933.071372 2.311412 0.770797 -0.825548 0.949798 0.3816180.771730 1.534116 0.774141 0.567580 -0.727539 1.0502570.764010 2.305584 3.071556 -0.972209 -0.211097 -0.7894581.533540 1.536959 3.070822 -0.843675 -0.161316 -0.9382411.532865 2.304212 0.772720 -0.978470 -0.484450 0.7653912.310007 1.543589 0.768089 0.670678 1.161128 -0.1590132.302862 2.304667 0.005257 -0.755682 -0.394555 1.0474480.001221 0.001858 1.531650 0.243843 0.370387 -1.2179680.002794 0.771460 2.301258 0.557214 0.513466 -1.0757960.771803 0.001659 2.312815 0.581739 0.331035 1.2319750.766615 0.762668 1.537440 -0.450725 -1.238472 -0.0629821.542602 0.002791 1.542013 0.966641 0.556860 0.8469901.536196 0.763930 2.302721 -0.312573 -0.987248 -0.7827162.307537 3.070804 2.302152 0.180669 -0.942747 -0.8948782.307256 0.764556 1.532883 0.121800 -0.861581 -0.9744153.073480 1.543000 1.541513 -0.408008 1.046169 0.7485600.005977 2.305783 2.303527 1.190499 -0.169798 -0.6216060.766213 1.543752 2.307568 -0.530750 1.194072 0.1828390.770337 2.312963 1.539869 0.290295 1.262377 0.4204011.539862 1.544159 1.538647 0.419477 1.274989 0.1770561.537355 2.311009 2.301856 -0.080381 0.872038 -0.9542732.301967 1.535125 2.310641 -0.933737 -0.525780 0.7971422.308222 2.309693 1.532199 0.315391 0.608834 -1.1092705



X Y Z Vx Vy Vz3.073500 3.074765 0.006528 0.403601 0.151681 -1.3005890.001265 0.770241 0.775624 -0.252260 -0.273748 -1.3441670.770666 0.000646 0.775633 -0.356392 -0.127338 -1.3460740.766012 0.762922 3.075464 0.573776 1.187509 0.0115191.533707 0.002945 0.004475 0.807243 -0.585194 -0.8929751.536895 0.763509 0.765245 0.170554 1.069627 0.7249902.311996 3.072210 0.766303 -1.064643 0.660107 0.5150042.311720 0.766110 3.072027 -1.012723 0.553364 0.6977020.001275 1.533760 3.070478 -0.254625 0.798342 1.0047543.071370 2.311414 0.770797 0.824290 -0.948726 -0.3811900.771731 1.534116 0.774142 -0.566935 0.727058 -1.0497350.764010 2.305584 3.071554 0.971704 0.210939 0.7883781.533541 1.536960 3.070822 0.843478 0.161545 0.9376611.532866 2.304211 0.772721 0.978253 0.484004 -0.7647592.310007 1.543590 0.768089 -0.670075 -1.160001 0.1592312.302861 2.304667 0.005258 0.755473 0.394369 -1.0463980.001221 0.001858 1.531649 -0.243828 -0.370081 1.2168020.002794 0.771461 2.301258 -0.556816 -0.512780 1.0754870.771804 0.001659 2.312816 -0.581005 -0.330863 -1.2313420.766614 0.762666 1.537439 0.450076 1.237325 0.0626001.542603 0.002791 1.542014 -0.966306 -0.556547 -0.8461721.536196 0.763929 2.302722 0.312440 0.986471 0.7823202.307537 3.070803 2.302152 -0.181136 0.942434 0.8940122.307255 0.764555 1.532883 -0.121606 0.860678 0.9740293.073481 1.543001 1.541513 0.407803 -1.045766 -0.7481660.005978 2.305782 2.303527 -1.189182 0.169249 0.6211430.766212 1.543753 2.307568 0.530013 -1.193003 -0.1822930.770337 2.312964 1.539868 -0.290062 -1.261960 -0.4201301.539863 1.544160 1.538647 -0.419287 -1.273736 -0.1770301.537355 2.311010 2.301855 0.080124 -0.871770 0.9534372.301967 1.535124 2.310642 0.933348 0.525304 -0.7964482.308222 2.309693 1.532199 -0.315295 -0.608494 1.1083986



Dis
ussion Sin
e our equations of motion are symmetri
 in time, that will inevitably 
ausethe reversibility. For a simple example, let's look at some parti
le moving under Newton'slaw: d2rdt2 = F (5)And after solving that equation, one would obtain a traje
tory of this parti
le as r = r(t).Suppose we 
an let time go ba
k, whi
h allows us to live in a time of t0 = �t. Then we arevery surprised to �nd out that the form of Newton's law doesn't 
hange. And that's theorigin of the reversibility . It's thus very naturally to 
he
k our 
ode to see if it 
an performthe rever sibility. this is a very simple but 
onvenient way.Also , I have more to speak is about the signs of velo
ities and higher derivat ives. Ourtransformation is t0 = �t, and dnrdt0n = (�1)n dnrdtn , therefore, we should not forget that we haveto 
hange 3rd and 5th order derivatives, not only the 1st derivatives( whi
h are velo
ities).1.1.3 Che
king Energy Conservation by varying ÆtStatement� NP: 108� NEQ: 1000� MAXKB: 1000� TR: 0.6� DR: 1.1In order to be 
ompared, four di�erent values of Æt( 0.001, 0.005, 0.007, 0.01) are 
hosen.From these four di�erent values of Æt(0.001, 0.005, 0.007, 0.01), we �nd that 0.005 and 0.001are better. At Æt =0.01, we 
an see that the total energy in
rease with time and it is veryabnormal. It shows that the time step is too large that the displa
ement is too far. At7
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Figure 2: Energy Conservation
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this time, the 
onservation of energy is in
reasingly damaged. However, if we would like toextend our time s
ale, we have to improve the Æt as large as possible. Here, we will haveto deal with this dilemma. And I think the most important thing is to have a dire
t imagewhat this simulation is, then we will have to get some pra
ti
es from some tests to knowwhi
h value is the best.1.2 Study a solid at several di�erent TemperaturesOur simulation are 
arried out at the following 
onditions:� NP: 108� NEQ: 1000� MAXKB: 4000� DR: 1.2And we 
hoose four di�erent temperatures as 0.5, 1.0, 2.0 and 1.2(redu
ed temperature).Running results are the follows.From �gure 3 we 
an see that the 
on�guration energy in
reases as the temperature goes up.However, at high temperatures, for example TR = 5:0, the 
on�guration energy no longer
onserves. This 
an hint us that something has 
hanged inthe system. At least, our systemis no longer stable at high temperatures. Re
alling our knowledge of phase transition, we
an inger from the 
on�guration energy's 
hanges that there exists some similar 
hanges inthe system, be
ause at this time temperature is 
onstant while the energy of the systemin
reases. The �g 4 shows the variation of pressure.From Figure 5, we 
an see that the higher the temperature is, the biger the Mean SquareDispla
ement is. this is reasonable sin
e the temperature indi
ates the average kineti
 energyof the mole
ules. when the mole
ule has bigger kineti
 energy, it will have moretenden
y tobreak out the 
ontrol otf the bound potential. At low temperature, it might only vibratearound its balan
e position. But as temperature goes suÆ
iently high, it has the 
han
e to9
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Figure 6: Distribution of G(R)go out to move freely. And that is a basi
 feature of liquids. so, in some sense, we 
an saythat the solid is melting.Next, we will 
ompare the g(r) of under these four temperatures with the ideal FCC stru
ture,whi
h means T=0 and the atom is stri
tly bound in its position.As the �gure 6 has shown, the fun
tion g(r) be
omes more and more 
at as temperature goesup. The ideal FCC stru
ture is a sum of Æ fun
tions. So its �gure is feally very sharp andhigh. when temperatuer in
reases, the parti
les moves ba
k and through. Therefore, g(r)be
omes more and more 
at just as the �gures have shown. The number of peaks de
reasesand it is more diÆ
ult to �nd whi
h position is peak.13



1.3 Determine the thermal expansion 
oeÆ
ient at approximatelyzero pressureThermal expansion 
oeÆ
ient is de�ned as:� = 1V (�V�T )N;P (6)A

ording to this de�nition, we should simulate our Lennard-Jones system at 
onstant pres-sure if we want to 
al
ulate from the above de�nition dire
tly. However, our simulationismole
ular dynami
s simulation at 
onstant temperature and 
onstant temperature or energy.And, we 
annot keep the pressure 
onstant in Haile 
ode. Thus we need to transform thisde�nitionof thermal expansion 
oeÆ
ient to another form.First sin
e we use the density as our parameter as our input parameter in Haile 
ode, it ismore 
onvenient to use the density (�) instead of volume (V). Substituting V = N� into (6)yields that � = �1�( ���T )N;P (7)Se
ond, we would like to 
hange the derivative at 
onstant pressure. In thermodynami
s,we know that there is a relation among the state quantities (pressure, temperature, density)whi
h is 
alled the state equation, i.e., f(P; T; �) = 0 (8)Thus, ( ���T )N;P = � �f�T�f�� = (� �f�T�f�P )(� �f�P�f�� ) = � (�P�T )N;�(�P�� )N;T (9)Thermal expansion 
oeÆ
ient 
an then be written as:� = 1� (�P�T )N;P(�P�� )N;T (10)In Simulation, we will determine the quantities in (10)to get the �nal results of thermal14



expansion 
oeÆ
ient. In order to be at approximately zero pressure, we would 
hoose hightemperature and low density as follows:� TR = T � = 2:0� DR = �� = 0:01In simulation, we have done as folowing pro
edures ( a star on the variable means it is inredu
ed units.):1. Determine the 
urrent pressure at given temperature and density.The input parameters of Haile 
ode are set asNP=864, NEQ=4000, MAXKB=4000, TR=2.0, DR=0.01.Then we got tge result of pressure asP � = 0:0202. Determine the term (�P�T )N;TAt this step we should vary the density instead. Let Haile 
ode run at followingNP=864, NEQ=4000, MAXKB=4000, TR=2.0, DR=0.015The resultant pressure is 0.030. So,(�P�� )� = 0:030� 0:0200:015� 0:010 = 0:5 (11)And � = 0:5=120:0 = 0:004167(K�1):This is one 
ase 
al
ulation of thermal expansion 
oeÆ
ient at approximately zero pressure.From the table handed out in 
lass, we 
an �nd that � for argon at zero pressure is:� = 0:3The two data mat
hes ea
h other. 15


